Solution of the Percus-Yevick equation for hard disks.

نویسندگان

  • M Adda-Bedia
  • E Katzav
  • D Vella
چکیده

The authors solve the Percus-Yevick equation in two dimensions by reducing it to a set of simple integral equations. They numerically obtain both the pair correlation function and the equation of state for a hard disk fluid and find good agreement with available Monte Carlo results. The present method of resolution may be generalized to any even dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hard-sphere radial distribution function again.

A theoretically based closed-form analytical equation for the radial distribution function, g(r), of a fluid of hard spheres is presented and used to obtain an accurate analytic representation. The method makes use of an analytic expression for the short- and long-range behaviors of g(r), both obtained from the Percus-Yevick equation, in combination with the thermodynamic consistency constraint...

متن کامل

Solution of the polymer Percus–Yevick approximation for the multicomponent totally flexible sticky two-point model of polymerizing fluid

The analytic solution of the polymer Percus–Yevick approximation for the multicomponent version of the totally flexible sticky two-point model of Wertheim is obtained in closed form. The model consists of an n-component mixture of hard spheres with two sticky points of the type A and B randomly placed on the surface of each hard sphere. The solution of the problem has been reduced to solving a ...

متن کامل

Equation of state of a seven-dimensional hard-sphere fluid. Percus-Yevick theory and molecular-dynamics simulations.

Following the work of Leutheusser [Physica A 127, 667 (1984)], the solution to the Percus-Yevick equation for a seven-dimensional hard-sphere fluid is explicitly found. This allows the derivation of the equation of state for the fluid taking both the virial and the compressibility routes. An analysis of the virial coefficients and the determination of the radius of convergence of the virial ser...

متن کامل

Solution of the Chandler–Silbey–Ladanyi equation for the multicomponent hard-sphere site–site molecular fluid: Percus–Yevick approximation

The analytical solution of the Chandler–Silbey–Ladanyi Percus–Yevick ~CSL-PY! approximation for multicomponent molecular site–site fluids is presented. The molecules are modeled by a collection of an arbitrary number of hard-sphere sites of any size and geometrical arrangement, provided only that all sites are in contact and the bonding distance is equal to the contact distance between the site...

متن کامل

Chemical-potential route: a hidden Percus-Yevick equation of state for hard spheres.

The chemical potential of a hard-sphere fluid can be expressed in terms of the contact value of the radial distribution function of a solute particle with a diameter varying from zero to that of the solvent particles. Exploiting the explicit knowledge of such a contact value within the Percus-Yevick theory, and using standard thermodynamic relations, a hitherto unknown Percus-Yevick equation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 18  شماره 

صفحات  -

تاریخ انتشار 2008